# Lab-Volt 9063 Software Development Kit (SDK) Documentation

**Revision 7** 

# Table of Contents

|          | 4        |
|----------|----------|
|          | .4<br>4  |
|          | 4        |
|          |          |
|          | .4       |
|          | .5       |
| the SDK  | .5       |
|          | .5       |
| properly | .6       |
|          | .6       |
|          |          |
|          | 7        |
|          | . /<br>Q |
|          | .0<br>0  |
| 1        | .5<br>0  |
| Τ        | .0       |
|          |          |
| ART 1    | .1       |
|          |          |
|          | .2       |
|          | 3        |
|          | .4       |
|          | .5       |
|          | .6       |
|          | .7       |
|          | .8       |
|          | 9        |
|          |          |
| 2        | 0        |
| ۲۲<br>د  | .u       |
| ۲۲<br>۲  | .2<br>10 |
| ۲۲<br>د  | .э<br>л  |
| ۲۲<br>د  | .4       |
| 2 2<br>د |          |
| ۲۲<br>د  | .0<br>.7 |
| 2        | . /      |
| 2        | .0<br>.0 |
| ۲۲<br>د  | .9       |
| 3<br>د   | 1        |
|          |          |
|          | 2        |
|          | 5        |
|          | 4        |
|          | 5        |
|          | 6        |
|          | properly |

| SetAnalogOutputValue    |    |
|-------------------------|----|
| SetAnalogOutputWaveform |    |
| SetDB9                  |    |
| SetDigitalOutputs       | 40 |
| SetDigitalOutputState   | 41 |
| SetEncoderPPR           |    |
| SetFunctionGenerator    |    |
| SetInput                |    |
| SetInputRangeE          | 45 |
| SetInputRangel          |    |
| SetNbInputs             |    |
| SetNbPackets            |    |
| SetSamplingFreq         |    |
| SetSync                 | 50 |
| SetTrigDelay            |    |
| SetTrigHardware         | 52 |
| SetTrigLevel            | 53 |
| SetTrigSlope            |    |
| SetTrigSource           | 55 |
| SetTrigTable            |    |

# Quick Start

### What can I do with this SDK

The 9063 SDK offers the possibility to control various inputs and outputs of the Data Acquisition and Control Interface, Model 9063. Using the functions in the SDK you can acquire data using voltages and currents inputs. You can also acquire data using the Analog inputs and Encoder value. The SDK gives you access to control the Analog and Digital outputs of the Data Acquisition and Control Interface.

#### **Contents of the SDK**

- DLL Files to communicate with the Data Acquisition and Control Interface
- Documentation about the functions included in the SDK
- LabVIEW examples
- MATLAB examples

#### Activation of the SDK

A function set (license) is needed to allow the communication between third-party programming tools (NI LabVIEW, Mathworks MATLAB,...) and the Lab-Volt Data Acquisition and Control Interface (DACI), Model 9063.

To know which available function sets (licenses) are activated in the 9063, connect it to a computer via a usb cable and run LVDAC-EMS. In the LVDAC-EMS Start-Up window, check if the function 9069-90 : SDK appears in the list.

| Par LVDAC-EMS Start-Up                                                                                |  |  |  |
|-------------------------------------------------------------------------------------------------------|--|--|--|
| Data Acquisition and Control Interface, Model 9063                                                    |  |  |  |
| Serial Number: G221745                                                                                |  |  |  |
| Available Function Sets                                                                               |  |  |  |
| 9069-10 : Computer-Based Instrumentation<br>9069-20 : Chonner/Inverter Control                        |  |  |  |
| 9069-30 : Thyristor Bridge Control                                                                    |  |  |  |
| 9069-40 : Home Energy Production Control<br>9069-S0 : Series Compensation Software                    |  |  |  |
| 9069-50 : Three-Phase PWM Rectifier Control<br>9069-60 : PMSM Control                                 |  |  |  |
| 9069-70 : HVDC Transmission System Control                                                            |  |  |  |
| 9069-80 : Static Var Compensator (SVC) Control                                                        |  |  |  |
| 9069-A0 : Synchronous Generator Control<br>9069-B0 : Static Synchronous Compensator (STATCOM) Control |  |  |  |
| 9069-C0 : Synchroscope                                                                                |  |  |  |
| SUGS-DU. DETA CONTON                                                                                  |  |  |  |
| Network Voltage and Frequency                                                                         |  |  |  |
| ● 120 V - 60 Hz                                                                                       |  |  |  |
| Work in stand-alone mode                                                                              |  |  |  |
| Refresh OK Cancel                                                                                     |  |  |  |
|                                                                                                       |  |  |  |

Figure 1: LVDAC-EMS Start-Up Windows

If the function SDK is unavailable on the 9063, a license file for 9063 SDK (Software Development Kit), Model 9069-90 must be ordered via a Lab-Volt dealer. It must then be activated in the DACI using the Function Set Activation Wizard available in LVDAC-EMS under Tools menu.



Figure 2: Function Set Activation Wizard

#### Minimum requirements to use the SDK

- License for 9063 SDK (Software Development Kit), Model 9069-90
- LabVIEW 2011 or later
  - 32-bit version only is supported.
- MATLAB 7.12 R2011a or later
  - 32-bit version only is supported.
     To learn how to install a 32-bit version on a 64-bit Windows machine, click on the link below: http://www.mathworks.com/support/solutions/en/data/1-579TVF/index.html?solution=1-579TVF
- Microsoft Visual Studio 2010

#### **Prerequisites**

- Windows XP (32-bit) or Windows 7 (32 or 64-bit)
- Microsoft .Net Framework 4.0

### How to use the SDK

The SDK is built with Microsoft Visual Studio 2012 using Microsoft .Net Framework 4.0. The Library can be used with different development tools that support Microsoft .Net Framework 4.0 including MATLAB, LabVIEW and Microsoft Visual Studio. All you have to do is to load the library and start using functions. **The files LV9063SDK.dll and WinUsbWrapper.dll should be in the same folder.** 

#### To MATLAB and LabVIEW users :

Depending on the which version you are using, you might need to manually specify the right Common Language Runtime (CLR). Using Notepad, open the *matlab.exe.config* (or *labview.exe.config*) file located in the same folder as *matlab.exe* (or *labview.exe*). If the file doesn't exist, create it and copy the following lines in it :

<configuration> <startup useLegacyV2RuntimeActivationPolicy="true"> <supportedRuntime version="v4.0"/> </startup> </configuration> If the file already exists, there are two things to look for in it:

- 1. Make sure the *supportedRuntime version* starts with "v4.0".
- 2. Make sure the *useLegacyV2RuntimeActivationPolicy* is set to true.

In the event that one or both of these conditions are not met, swap the appropriate lines with the ones provided on the previous page. Please note that the « supportedRuntime version » parameter may look different, but as long as it starts with « **v4.0** », it is OK:

| ٠ | <supportedruntime< th=""><th>version="v4.0.2027.3100"/&gt;</th><th>OK</th></supportedruntime<> | version="v4.0.2027.3100"/> | OK     |
|---|------------------------------------------------------------------------------------------------|----------------------------|--------|
| ٠ | <supportedruntime< th=""><th>version="v4.0.30319"/&gt;</th><th>OK</th></supportedruntime<>     | version="v4.0.30319"/>     | OK     |
| • | <supportedruntime< th=""><th>version="v2.0"/&gt;</th><th>NOT OK</th></supportedruntime<>       | version="v2.0"/>           | NOT OK |

#### Error codes should be handled properly

For ease of reading, the examples provided in the documentation disregard almost all error codes returned by the various functions. For a better idea on how to handle error codes properly, please refer to the examples (MATLAB, LabVIEW or C#) provided in the SDK folder. The default location for these files is *"C:\Program Files (x86)\Lab-Volt\LVDAC-EMS\SDK\9063 SDK\"*.

### **Controlling multiple 9063**

To control multiple 9063, you must create a LV9063EntryPoint instance for each device you want to control and initialize them to the proper 9063 index. See example below:

```
LV9063EntryPoint device1 = new LV9063EntryPoint();
LV9063EntryPoint device2 = new LV9063EntryPoint();
device1.InitDevice(0); // device1 is now associated with the 9063 at index 0.
device2.InitDevice(1); // device2 is now associated with the 9063 at index 1.
```

# Diagrams (Using the SDK)

# **Operating the 9063 SDK**







# 9063 SDK



# Constants

# Description

These are the constants that can be used with the 9063 SDK.

# Values Description

| AO1   | Analog Output #1.       |
|-------|-------------------------|
| AO2   | Analog Output #2.       |
| DO1   | Digital Output #1.      |
| DO2   | Digital Output #2.      |
| STOP  | Stop an analog output.  |
| START | Start an analog output. |
|       |                         |

# ErrorCode

### Description

This is an enumeration of different error codes that may occur when calling a function of the SDK. Most of the SDK functions will return an error code of type *ErrorCode*.

### Prototype

```
public enum ErrorCode
{
    None = 0,
    Communication = -1,
    OutOfBounds = -2,
    DeviceID = -3,
    InvalidParameter = -4,
    UnavailablePackage = -5
}
```

### **Values Descriptions**

| None               | There are no errors.                                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------|
| Communication      | Communication error. Check the connexion between the computer and the 9063 module.                    |
| OutOfBounds        | Index error. The index provided to the function is invalid.                                           |
| DeviceID           | This error occurs if the module index does not exist when calling the <i>InitDevice</i> function.     |
| InvalidParameter   | The parameter passed to the function is invalid.                                                      |
| UnavailablePackage | This error occurs when calling a function that is not available for the 9063 module currently in use. |

```
LV9063EntryPoint dll = new LV9063EntryPoint();
if (dll.InitDevice(0) != LV9063EntryPoint.ErrorCode.None)
{
    System.Windows.Forms.MessageBox.Show("Communication failed");
    return;
}
```

# *FunctionType*

### Description

This is an enumeration to adjust the type of function used by analog outputs.

### Prototype

```
public enum FunctionType
{
        CommandButton,
        FunctionGenerator
}
```

### **Values Descriptions**

CommandButtonThe analog output is controlled by a command button.FunctionGeneratorThe analog output is used as a function generator.

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.AO1,
   LV9063EntryPoint.FunctionType.FunctionGenerator);
dll.SetAnalogOutputAmplitude(LV9063EntryPoint.AO1, 5f);
dll.SetAnalogOutputWaveform(LV9063EntryPoint.AO1,
   LV9063EntryPoint.Waveform.Sine);
dll.SetAnalogOutputStartStop(LV9063EntryPoint.AO1, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

## Input

### Description

This is an enumeration of all the inputs of the 9063.

## Prototype

```
public enum Input
{
      E1 = 0,
      I1 = 1,
      E2 = 2,
      I2 = 3,
      E3 = 4,
      I3 = 5,
      E4 = 6,
      I4 = 7,
      AI1 = 8,
      AI2 = 9,
      AI3 = 10,
      AI4 = 11,
      AI5 = 12,
      AI6 = 13,
      AI7 = 14,
      AI8 = 15
}
```

### **Values Descriptions**

| E  | Voltage inputs. |
|----|-----------------|
| I  | Current inputs. |
| AI | Analog inputs.  |

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
```

# InputRange

### Description

This is an enumeration for the range of the selected input.

### Prototype

```
public enum InputRange
{
    Low,
    High
}
```

### **Values Descriptions**

| Low input ranges (-80V/+80V for voltage inputs, -4A/+4A for current              |
|----------------------------------------------------------------------------------|
| inputs)                                                                          |
| High input ranges (-800V/+800V for voltage inputs, -40A/+40A for current inputs) |
|                                                                                  |

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.El); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.Il); // Set input #2 as I1
dll.SetInputRangeE(LV9063EntryPoint.Input.El, LV9063EntryPoint.InputRange.Low);
dll.SetInputRangeI(LV9063EntryPoint.Input.Il, LV9063EntryPoint.InputRange.High);
dll.SetSamplingFreq(1000);
dll.SetSamplingFreq(1000);
dll.SendAcqTable();
dll.AcquireData(data);
```

# Encoder

### Description

This is an enumeration to specify the pulse per revolution of the encoder in use.

### Prototype

```
public enum Encoder
{
    encoder360 = 360,
    encoder512 = 512,
    encoder1024 = 1024,
    encoder2048 = 2048
}
```

### **Values Descriptions**

encoder360360 pulses per revolution.encoder512512 pulses per revolution.encoder10241024 pulses per revolution.encoder20482048 pulses per revolution.

```
int value = 0;
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetEncoderPPR(LV9063EntryPoint.Encoder.encoder360);
dll.GetEncoderValue(ref value);
```

TrigSlope

### Description

This is an enumeration for the triggering slope.

### Prototype

```
public enum TrigSlope
{
    Rising,
    Falling
}
```

### **Values Descriptions**

| Rising  | Rising edge (positive slope).  |
|---------|--------------------------------|
| Falling | Falling edge (negative slope). |

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetTrigHardware(true);
dll.SetTrigSource(LV9063EntryPoint.TrigSource.E1); // Set E1 as triggering source
dll.SetTrigLevel(1.5f); // Set 1.5 V as triggering level
dll.SetTrigSlope(LV9063EntryPoint.TrigSlope.Rising); // Positive slope
dll.SetSamplingFreq(1000);
dll.SendAcqTable();
dll.AcquireData(data);
```

# TrigSource

### Description

This is an enumeration for the triggering source when using the trigger functions.

## Prototype

```
public enum TrigSource
{
      Off = 0,
      E1 = 1,
      E2 = 2,
      E3 = 3,
      E4 = 4,
      I1 = 5,
      I2 = 6,
      I3 = 7,
      I4 = 8,
      AI1 = 13,
      AI2 = 14,
      AI3 = 15,
      AI4 = 16,
      AI5 = 17,
      AI6 = 18,
      AI7 = 19,
      AI8 = 20
}
```

### **Values Descriptions**

| Off | No triggering source.                       |
|-----|---------------------------------------------|
| E   | Trigger on the corresponding voltage input. |
| I   | Trigger on the corresponding current input. |
| Al  | Trigger on the corresponding analog input.  |

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetTrigHardware(true);
dll.SetTrigSource(LV9063EntryPoint.TrigSource.E1);
```

# Waveform

### Description

This is an enumeration to adjust the type of wave form used by analog outputs.

### Prototype

```
public enum Waveform
{
    Sine,
    Square,
    Triangle,
    SawTooth
}
```

### **Values Descriptions**

SineSine wave form.SquareSquare wave form.TriangleTriangle wave form.SawToothSaw tooth wave form.

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.AO1,
    LV9063EntryPoint.FunctionType.FunctionGenerator);
dll.SetAnalogOutputAmplitude(LV9063EntryPoint.AO1, 5f);
dll.SetAnalogOutputWaveform(LV9063EntryPoint.AO1,
    LV9063EntryPoint.Waveform.Square);
dll.SetAnalogOutputStartStop(LV9063EntryPoint.AO1, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

### AcquireData

### Description

Acquire the data points from the 9063 module.

### Prototype

public ErrorCode AcquireData(float[] data, bool formatted)

### Parameters

data Output parameter that will store the data points received from the 9063 module. If this parameter is not initialized or is of the wrong size, it will be automatically initialized / resized to the correct size. The received data is organized in the array in this manner: for example, if the inputs E1, E2 and I1 were specified before calling SendAcqTable(), then the data in the array will be [E1<sub>0</sub>, E2<sub>0</sub>, I1<sub>0</sub>, E1<sub>1</sub>, E2<sub>1</sub>, I1<sub>1</sub>, E1<sub>2</sub>, E2<sub>2</sub>, I1<sub>2</sub>,...].

Ex.: For 2 inputs (channels) with 1024 samples per input (nbPackets = 8 for SetAcqTable), the correct size of the array is 1024 samples \* 2 inputs = 2048 array elements.

formatted Flag to indicate if the data must be raw or formatted, where: True = receive formatted values (V or A), False = receive raw values (12 bits ADC value)

|                                | Range | Min                       |                    | Мах                       |                    |
|--------------------------------|-------|---------------------------|--------------------|---------------------------|--------------------|
|                                |       | Raw (12bits ADC)<br>Value | Formatted<br>Value | Raw (12bits ADC)<br>Value | Formatted<br>Value |
| Voltage Inputs                 | High  | 0                         | -800 V             | 4095                      | +800 V             |
| (E1 - E4)                      | Low   | 0                         | -80 V              | 4095                      | +80 V              |
| Current Inputs                 | High  | 0                         | -40 A              | 4095                      | +40 A              |
| (11 - 14)                      | Low   | 0                         | -4 A               | 4095                      | +4 A               |
| Analog Inputs<br>(AI-1 – AI-8) | N/A   | 0                         | -10 V              | 4095                      | +10 V              |

#### Table 1: Raw values interpretation

### **Return Values**

ErrorCode.None ErrorCode.Communication

## AcquireData...

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(3); // Set for 3 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetInput(2, LV9063EntryPoint.Input.I1); // Set input #3 as I1
dll.SetSamplingFreq(1000);
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

SetInput SetNbInputs SetNbPackets SetSamplingFreq

# CloseDevice

### Description

Terminate communication with the 9063 module.

### Prototype

```
public ErrorCode CloseDevice()
```

### Parameters

This function has no parameters.

### **Return Values**

ErrorCode.None ErrorCode.Communication

### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
// ..
// Do something
// ..
dll.CloseDevice();
```

# See Also

LV9063EntryPoint InitDevice

# *GetEncoderValue*

### Description

Read the speed in RPM determined from the encoder.

### Prototype

public ErrorCode GetEncoderValue(ref int value)

#### Parameters

value

Output parameter that will store the speed in RPM.

### **Return Values**

ErrorCode.None ErrorCode.Communication

### Example

```
int value = 0;
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetEncoderPPR(LV9063EntryPoint.Encoder.encoder360);
dll.GetEncoderValue(ref value);
```

### See Also

SetEncoderPPR

# **GetFirmwareVersion**

### Description

Read the firmware version of the 9063 module.

### Prototype

public ErrorCode GetFirmwareVersion(ref int version)

### Parameters

version

Output parameter that will store the firmware version of the 9063 module.

### **Return Values**

ErrorCode.None ErrorCode.Communication

```
int version = 0;
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.GetFirmwareVersion(ref version);
```

## InitDevice

### Description

Initialize the communication with the 9063 module.

### Prototype

public ErrorCode InitDevice(int moduleIndex)

#### Parameters

moduleIndex Index of the selected 9063 module.

### **Return Values**

```
ErrorCode.None
ErrorCode.DeviceID
ErrorCode.UnavailablePackage
```

#### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
if (dll.InitDevice(0) != LV9063EntryPoint.ErrorCode.None)
{
    System.Windows.Forms.MessageBox.Show("Communication failed");
    return;
}
```

### See Also

LV9063EntryPoint CloseDevice ErrorCode

# LV9063EntryPoint

### Description

Class constructor. Use this constructor to create your object to control the 9063 module.

### Prototype

```
public LV9063EntryPoint()
```

#### Parameters

This constructor has no parameters.

### **Return Values**

Returns a new object of type LV9063EntryPoint. DLL must be loaded into your project before you can use this function.

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
```

# SendAcqTable

### Description

Send the command to set the acquisition table. Call this function after setting the inputs, the sampling frequency or the number of packets or after calling the *SetAcqTable* function.

#### Prototype

```
public ErrorCode SendAcqTable()
```

#### **Parameters**

This function has no parameters.

#### **Default Values**

| NbInputs          | 1                                                |
|-------------------|--------------------------------------------------|
| Input             | <pre>Input #1 as LV9063EntryPoint.Input.E1</pre> |
| NbPackets         | 2                                                |
| SamplingFrequency | 1000 Hz                                          |
| TrigHardware      | false                                            |
| TrigLevel         | 0 V                                              |
| TrigSlope         | LV9063EntryPoint.TrigSlope.Rising                |
| TrigDelay         | 0                                                |
| TrigSource        | LV9063EntryPoint.TrigSource.OFF                  |
| Sync              | false                                            |

### **Return Values**

ErrorCode.None ErrorCode.Communication

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.I1); // Set input #1 as I1
dll.SetInput(1, LV9063EntryPoint.Input.I2); // Set input #2 as I2
dll.SetSamplingFreq(1000);
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

SetNbInputs SetInput SetSamplingFreq SetAcqTable

# SendAnalogOutputsTable

### Description

Send the analog outputs table to the 9063 module.

### Prototype

```
public ErrorCode SendAnalogOutputsTable()
```

### Parameters

This function has no parameters.

### **Default Values**

| AnalogOutputFunction  | LV9063EntryPoint.FunctionType.CommandButton |
|-----------------------|---------------------------------------------|
| AnalogOutputWaveform  | LV9063EntryPoint.Waveform.Sine              |
| AnalogOutputAmplitude | 0 V                                         |
| AnalogOutputFrequency | 0.01 Hz                                     |
| AnalogOutputValue     | 0 (-10V)                                    |
| AnalogOutputStartStop | STOP                                        |

### **Return Values**

ErrorCode.None ErrorCode.Communication

#### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.A01,
    LV9063EntryPoint.FunctionType.FunctionGenerator);
dll.SetAnalogOutputAmplitude(LV9063EntryPoint.A01, 5f);
dll.SetAnalogOutputWaveform(LV9063EntryPoint.A01,
    LV9063EntryPoint.Waveform.Sine);
dll.SetAnalogOutputStartStop(LV9063EntryPoint.A01, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

### See Also

SetAnalogOutputAmplitude SetAnalogOutputFrequency SetAnalogOutputFunction SetAnalogOutputStartStop SetAnalogOutputValue SetAnalogOutputWaveform

# SendDigitalOutputsTable

### Description

Send the command to the 9063 to set the digital outputs.

### Prototype

```
public ErrorCode SendDigitalOutputsTable()
```

### Parameters

This function has no parameters.

### **Default Values**

| DigitalOutputState | false |
|--------------------|-------|
| DB9Value           | 0     |

### **Return Values**

ErrorCode.None ErrorCode.Communication

### Example

```
byte db9Value;
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetDigitalOutputState(LV9063EntryPoint.DO1, true);
db9Value = 0x4A; // Set control pins 1, 3 and SYNC
dll.SetDB9(db9Value);
dll.SendDigitalOutputSTable();
```

### See Also

SetDigitalOutputState SetDB9

# SendRelayTable

### Description

Send the command to set the relay table.

### Prototype

```
public ErrorCode SendRelayTable()
```

### Parameters

This function has no parameters.

### **Return Values**

```
ErrorCode.None
ErrorCode.Communication
```

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.I1); // Set input #1 as I1
dll.SetInput(1, LV9063EntryPoint.Input.I2); // Set input #2 as I2
dll.SetInputRangeI(LV9063EntryPoint.Input.I1, LV9063EntryPoint.InputRange.Low);
dll.SetInputRangeI(LV9063EntryPoint.Input.I2, LV9063EntryPoint.InputRange.High);
dll.SetSamplingFreq(1000);
dll.SetSamplingFreq(1000);
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetNbInputs SetInput SetInputRangeE SetInputRangeI

## SetAcqTable

### Description

Set the acquisition table with the parameters for each input.

### Prototype

public ErrorCode SetAcqTable(float samplingFreq, Input[] inputs, int nbPackets)

### Parameters

| samplingFreq | New sampling frequency in Hertz. Frequency must be between 0.02 Hz     |
|--------------|------------------------------------------------------------------------|
|              | and 600 KHz.                                                           |
| inputs       | Array of variable size. Contains the input IDs. See Input enum.        |
| nbPackets    | New number of packets of 256 samples per input.                        |
|              | Ex.: For 2 inputs (channels) with 1024 samples per input, nbPackets is |
|              | (1024 samples / 256) * 2 inputs = <b>8</b> packets.                    |

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint.Input[] inputs = { LV9063EntryPoint.Input.E1,
   LV9063EntryPoint.Input.E2, LV9063EntryPoint.Input.II};// Set inputs #1 as E1,
   #2 as E2 and #3 as I1
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAcqTable(1000f, inputs, 4);// Set sampling freq. at 1000Hz, set the inputs
   and set 4 packets
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetInput SetNbInputs

### SetAllInputsRange

#### Description

Set the range for all the *E* and *I* inputs.

#### Prototype

public ErrorCode SetAllInputsRange(InputRange[] ranges)

#### **Parameters**

ranges

An array for the 8 inputs range, organized as: [E1, E2, E3, E4, I1, I2, I3, I4]

Return Values

# ErrorCode.None

ErrorCode.OutOfBounds

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(8); // Set for 8 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetInput(2, LV9063EntryPoint.Input.E3); // Set input #3 as E3
dll.SetInput(3, LV9063EntryPoint.Input.E4); // Set input #4 as E4
dll.SetInput(4, LV9063EntryPoint.Input.I1); // Set input #5 as I1
dll.SetInput(5, LV9063EntryPoint.Input.I2); // Set input #6 as I2
dll.SetInput(6, LV9063EntryPoint.Input.I3); // Set input #7 as I3
dll.SetInput(7, LV9063EntryPoint.Input.I4); // Set input #8 as I4
dll.SetAllInputsRange(new LV9063EntryPoint.InputRange[] {
     LV9063EntryPoint.InputRange.Low, LV9063EntryPoint.InputRange.Low,
     LV9063EntryPoint.InputRange.Low, LV9063EntryPoint.InputRange.High,
     LV9063EntryPoint.InputRange.Low, LV9063EntryPoint.InputRange.Low,
     LV9063EntryPoint.InputRange.Low, LV9063EntryPoint.InputRange.High });
           // Set E1 as Low range, E2 as Low range,
           // E3 as Low range, E4 as High range,
           // I1 as Low range, I2 as Low range,
           // I3 as Low range and I4 as High range
dll.SendRelayTable();
dll.SetSamplingFreq(1000);
dll.SendAcqTable();
dll.AcquireData(data);
```

#### See Also

AcquireData SetInput SetNbInputs SetInputRangeE SetInputRangeI SendRelayTable

# SetAnalogOutputAmplitude

### Description

Set the amplitude in Volt for the specified analog output (Function Generator only).

### Prototype

public ErrorCode SetAnalogOutputAmplitude(int index, float amplitude)

#### Parameters

| index     | Index of the analog output. Can be AO1 or AO2, where:                   |
|-----------|-------------------------------------------------------------------------|
|           | AO1 = Analog output 1,                                                  |
|           | AO2 = Analog output 2.                                                  |
| amplitude | New amplitude value in Volt for the analog output at <i>index</i> . The |
|           | amplitude must be between -10 V to 10 V.                                |

#### **Return Values**

```
ErrorCode.None
ErrorCode.OutOfBounds
```

### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.AO1,
    LV9063EntryPoint.FunctionType.FunctionGenerator);
dll.SetAnalogOutputAmplitude(LV9063EntryPoint.AO1, 5f);
dll.SetAnalogOutputWaveform(LV9063EntryPoint.AO1,
    LV9063EntryPoint.Waveform.Sine);
dll.SetAnalogOutputStartStop(LV9063EntryPoint.AO1, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

### See Also

SetAnalogOutputFrequency SetAnalogOutputFunction SetAnalogOutputStartStop SendAnalogOutputsTable SetAnalogOutputValue SetAnalogOutputWaveform

# SetAnalogOutputFrequency

### Description

Set the frequency in Hertz for the specified analog output (Function Generator only).

### Prototype

public ErrorCode SetAnalogOutputFrequency(int index, float frequency)

#### Parameters

| index     | Index of the analog output. Can be AO1 or AO2, where:            |
|-----------|------------------------------------------------------------------|
|           | AO1 = Analog output 1,                                           |
|           | AO2 = Analog output 2.                                           |
| frequency | New frequency value in Hertz for the analog output at index. The |
|           | frequency must be between 0 Hz to 100 Hz.                        |

#### **Return Values**

```
ErrorCode.None
ErrorCode.OutOfBounds
```

#### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.AO1,
    LV9063EntryPoint.FunctionType.FunctionGenerator);
dll.SetAnalogOutputFrequency(LV9063EntryPoint.AO1, 60f);
dll.SetAnalogOutputWaveform(LV9063EntryPoint.AO1,
    LV9063EntryPoint.Waveform.Sine);
dll.SetAnalogOutputStartStop(LV9063EntryPoint.AO1, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

### See Also

SetAnalogOutputAmplitude SetAnalogOutputFunction SetAnalogOutputStartStop SendAnalogOutputsTable SetAnalogOutputValue SetAnalogOutputWaveform

## SetAnalogOutputFunction

### Description

Set the function type for the specified analog output.

### Prototype

public ErrorCode SetAnalogOutputFunction(int index, FunctionType function)

#### **Parameters**

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.A01,
    LV9063EntryPoint.FunctionType.FunctionGenerator);
dll.SetAnalogOutputAmplitude(LV9063EntryPoint.A01, 5f);
dll.SetAnalogOutputWaveform(LV9063EntryPoint.A01,
    LV9063EntryPoint.Waveform.Sine);
dll.SetAnalogOutputStartStop(LV9063EntryPoint.A01, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

### See Also

SetAnalogOutputAmplitude SetAnalogOutputFrequency SetAnalogOutputStartStop SendAnalogOutputsTable SetAnalogOutputValue SetAnalogOutputWaveform

# SetAnalogOutputStartStop

### Description

Set the start/stop status of the specified analog output (Function Generator only).

### Prototype

public ErrorCode SetAnalogOutputStartStop(int index, int status)

#### Parameters

| index  | Index of the analog output. Can be AO1 or AO2, where:                    |
|--------|--------------------------------------------------------------------------|
|        | AO1 = Analog output 1,                                                   |
|        | AO2 = Analog output 2.                                                   |
| status | New status for the analog output at <i>index</i> . Can be STOP or START, |
|        | where:                                                                   |
|        | STOP = Stopped state,                                                    |
|        | START = Started state.                                                   |

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.AO1,
    LV9063EntryPoint.FunctionType.FunctionGenerator);
dll.SetAnalogOutputAmplitude(LV9063EntryPoint.AO1, 5f);
dll.SetAnalogOutputWaveform(LV9063EntryPoint.AO1,
    LV9063EntryPoint.Waveform.Sine);
dll.SetAnalogOutputStartStop(LV9063EntryPoint.AO1, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

### See Also

SetAnalogOutputAmplitude SetAnalogOutputFrequency SetAnalogOutputFunction SendAnalogOutputsTable SetAnalogOutputValue SetAnalogOutputWaveform

# SetAnalogOutputValue

### Description

Set the value of the specified analog output (Command Button only).

### Prototype

public ErrorCode SetAnalogOutputValue(int index, int value)

4095 = 10 V.

### Parameters

| index | Index of the analog output. Can be AO1 or AO2, where:<br>AO1 = Analog output 1,<br>AO2 = Analog output 2. |
|-------|-----------------------------------------------------------------------------------------------------------|
| value | New value for the analog output at <i>index</i> . Can be in the range [0, 4095] where:<br>0 = -10 V,      |
|       | <br>2047 = 0 V,<br>                                                                                       |

#### **Return Values**

```
ErrorCode.None
ErrorCode.OutOfBounds
```

### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.AO1,
       LV9063EntryPoint.FunctionType.CommandButton);
dll.SetAnalogOutputValue(LV9063EntryPoint.AO1, 3072); // ~5 Volts
dll.SetAnalogOutputStartStop(LV9063EntryPoint.AO1, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

### See Also

SetAnalogOutputAmplitude SetAnalogOutputFrequency SetAnalogOutputFunction SetAnalogOutputStartStop SendAnalogOutputsTable SetAnalogOutputWaveform

# SetAnalogOutputWaveform

### Description

Set the waveform for the specified analog output.

### Prototype

public ErrorCode SetAnalogOutputWaveform(int index, Waveform waveform)

#### Parameters

| index    | Index of the analog output. Can be AO1 or AO2, where:          |
|----------|----------------------------------------------------------------|
|          | AO1 = Analog output 1,                                         |
|          | AO2 = Analog output 2.                                         |
| waveform | New waveform type for the analog output at index. See Waveform |
|          | enum.                                                          |

#### **Return Values**

```
ErrorCode.None
ErrorCode.OutOfBounds
```

### Example

```
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAnalogOutputFunction(LV9063EntryPoint.AO1,
    LV9063EntryPoint.FunctionType.FunctionGenerator);
dll.SetAnalogOutputAmplitude(LV9063EntryPoint.AO1, 5f);
dll.SetAnalogOutputWaveform(LV9063EntryPoint.AO1,
    LV9063EntryPoint.Waveform.Sine);
dll.SetAnalogOutputStartStop(LV9063EntryPoint.AO1, LV9063EntryPoint.START);
dll.SendAnalogOutputSTable();
```

### See Also

SetAnalogOutputAmplitude SetAnalogOutputFrequency SetAnalogOutputFunction SetAnalogOutputStartStop SendAnalogOutputsTable SetAnalogOutputValue

### SetDB9

#### Description

Set the state of the pins on the DB9 port, where a pin set to 0 equals to 0 V and a pin set to 1 equals to 5 V.

### Prototype

public ErrorCode SetDB9(byte value)

#### Parameters

value

New value for the pins of the DB9, where:

| •                     |                       |
|-----------------------|-----------------------|
| Bit0 = Control Pin 1, | Bit1 = Control Pin 2, |
| Bit2 = Control Pin 3, | Bit3 = Control Pin 4, |
| Bit4 = Control Pin 5, | Bit5 = Control Pin 6, |
| Bit6 = SYNC Pin 7.    |                       |

#### **Return Values**

ErrorCode.None

#### Example

```
byte db9Value;
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetDigitalOutputState(LV9063EntryPoint.DO1, true);
db9Value = 0x4A; // "0100 1010" Set control pins 2, 4 and SYNC to 5V
dll.SetDB9(db9Value);
dll.SendDigitalOutputsTable();
```

### See Also

SetDigitalOutputState SendDigitalOutputsTable

# *SetDigitalOutputs*

### Description

Set the TTL level of both digital outputs.

### Prototype

public ErrorCode SetDigitalOutputs(bool d1, bool d2)

#### Parameters

| d1 | New TTL level for the digital output 1, where: |
|----|------------------------------------------------|
|    | <i>True</i> = high (+5 V),                     |
|    | False = low (0 V).                             |
| d2 | New TTL level for the digital output 2, where: |
|    | <i>True</i> = high (+5 V),                     |
|    | <i>False</i> = low (0 V).                      |

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

```
byte db9Value;
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetDigitalOutputs(false, true); // Digital output #1 to low and #2 to high
dll.SendDigitalOutputsTable();
```

### See Also

SetDigitalOutputState SendDigitalOutputsTable

# SetDigitalOutputState

### Description

Set the state of the specified digital output.

### Prototype

public ErrorCode SetDigitalOutputState(int index, bool state)

### Parameters

| index | Index of the digital output, where:                       |
|-------|-----------------------------------------------------------|
|       | 0 = Digital output 1,                                     |
|       | 1 = Digital output 2.                                     |
| state | New state for the digital output at <i>index</i> , where: |
|       | <i>True</i> = high (+5 V) <i>,</i>                        |
|       | False = low (0 V).                                        |
|       |                                                           |

### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

### Example

```
byte db9Value;
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetDigitalOutputState(LV9063EntryPoint.DO1, true);
db9Value = 0x4A; // "0100 1010" Set control pins 2, 4 and SYNC
dll.SetDB9(db9Value);
dll.SendDigitalOutputsTable();
```

### See Also

SendDigitalOutputsTable SetDB9

# SetEncoderPPR

### Description

Set the number of pulses per revolution of the encoder.

### Prototype

public ErrorCode SetEncoderPPR(Encoder ppr)

#### Parameters

ppr

New number of pulses per revolution of the encoder.

### **Return Values**

ErrorCode.None

#### Example

```
int val = 0;
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetEncoderPPR(LV9063EntryPoint.Encoder.encoder360);
dll.GetEncoderValue(ref val);
```

### See Also

GetEncoderValue

# SetFunctionGenerator

### Description

Set the specified analog output to create a function generator.

### Prototype

```
public ErrorCode SetFunctionGenerator(int index, Waveform waveform, float amplitude,
float frequency)
```

#### Parameters

| index     | Index of the analog output, where:                                                             |
|-----------|------------------------------------------------------------------------------------------------|
|           | AO1 = Analog output 1,                                                                         |
|           | AO2 = Analog output 2.                                                                         |
| waveform  | New waveform type for the analog output at <i>index</i> . See Waveform enum.                   |
| amplitude | New amplitude value in Volt for the analog output at <i>index</i> . Amplitude can be between 0 |
|           | to 10 V                                                                                        |
| frequency | New frequency value in Hertz for the analog output at index. Frequency can be between          |
|           | 0 to 100 Hz.                                                                                   |

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

### See Also

SetEncoder GetEncoderValue

### SetInput

### Description

Set an input to read data from the 9063.

### Prototype

public ErrorCode SetInput(int index, Input input)

#### **Parameters**

 index
 Index of the input in the input vector. The index value must be between 0 and one less than the number of inputs set by the "SetNbInputs" function. For example, if you use "SetNBInputs(3)", then the valid index values are 0, 1 and 2.
 ID of the input. See Input enum.

#### **Return Values**

```
ErrorCode.None
ErrorCode.OutOfBounds
```

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetSamplingFreq(1000f);
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetNbInputs SetInputRangeE SetInputRangeI

# SetInputRangeE

### Description

Set the range for the specified voltage input.

### Prototype

public ErrorCode SetInputRangeE(Input input, InputRange range)

#### Parameters

| input | ID of the voltage input. See Input enum.                        |
|-------|-----------------------------------------------------------------|
| range | New range for the specified voltage input. See InputRange enum. |

### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.El); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.Il); // Set input #2 as I1
dll.SetInputRangeE(LV9063EntryPoint.Input.El, LV9063EntryPoint.InputRange.Low);
dll.SetInputRangeI(LV9063EntryPoint.Input.Il, LV9063EntryPoint.InputRange.Low);
dll.SetSamplingFreq(1000f);
dll.SetSamplingFreq(1000f);
dll.SendAcqTable();
dll.AcquireData(data);
```

# See Also

AcquireData SetInput SetNbInputs SetInputRangel SendRelayTable

# SetInputRangel

### Description

Set the range for the specified current input.

### Prototype

public ErrorCode SetInputRangeI(Input index, InputRange range)

#### Parameters

| index | ID of the current input. See Input enum.                        |
|-------|-----------------------------------------------------------------|
| range | New range for the specified current input. See InputRange enum. |

### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.El); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.Il); // Set input #2 as I1
dll.SetInputRangeE(LV9063EntryPoint.Input.El, LV9063EntryPoint.InputRange.Low);
dll.SetInputRangeI(LV9063EntryPoint.Input.Il, LV9063EntryPoint.InputRange.Low);
dll.SetSamplingFreq(1000f);
dll.SetSamplingFreq(1000f);
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetInput SetNbInputs SetInputRangeE SendRelayTable

# **SetNbInputs**

### Description

Set the number of inputs to read data from the 9063.

### Prototype

public ErrorCode SetNbInputs(int nbInputs)

#### **Parameters**

nblnputs New number of inputs.

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetSamplingFreq(1000f);
dll.SendAcqTable();
dll.AcquireData(data);
```

#### See Also

AcquireData SetInput SetInputRangeE SetInputRangeI

### **SetNbPackets**

#### Description

Set the number of packets containing 256 samples. The total number of samples is divided evenly between all enabled inputs, where:

<u>nbPackets \* 256 samples</u> = number of samples per input nbInputs

### Prototype

public ErrorCode SetNbPackets(int nbPackets)

#### Parameters

nbPackets New number of packets of 256 samples.

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

#### See Also

AcquireData SetNbInputs SetInput

# SetSamplingFreq

### Description

Set the sampling frequency in Hertz.

### Prototype

public ErrorCode SetSamplingFreq(float samplingFreq)

#### Parameters

samplingFreq New sampling frequency in Hertz. Sampling frequency must be between 0.02 Hz to 600 KHz.

### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetSamplingFreq(1000f); // 1000 Hz
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetInput SetNbInputs

## SetSync

### Description

Set the status of the SYNC signal as the triggering signal.

### Prototype

public ErrorCode SetSync(bool status)

#### **Parameters**

status

New status of the SYNC signal, where:

*True* = use the *SYNC* signal for the triggering signal,

*False* = do not use the *SYNC* signal for the triggering signal.

### **Return Values**

ErrorCode.None

### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.El); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetTrigHardware(true);
dll.SetSync(true); // Use the SYNC signal as the triggering signal
dll.SetSamplingFreq(1000f); // 1000 Hz
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetNbInputs SetInput

### *SetTrigDelay*

### Description

Set the triggering delay (hardware triggering only).

#### Prototype

```
public ErrorCode SetTrigDelay(int delay)
```

...

...

#### **Parameters**

delay

New triggering delay. Must be in the range [0, 65535], where:

0 = first triggering point for which there is at least 50% of the points after this point and at least 0% of the points before this point,

6553 = first triggering point for which there is at least 45% of the points after this point and at least 5% of the points before this point,

65535 = first triggering point for which there is at least 0% of the points after this point and at least 50% of the points before this point.

#### **Return Values**

```
ErrorCode.None
ErrorCode.OutOfBounds
```

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetTrigHardware(true);
dll.SetTrigDelay(0);
dll.SetSamplingFreq(1000f); // 1000 Hz
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetTrigHardware SetTrigLevel SetTrigSlope SetTrigSource

### SetTrigHardware

### Description

Set the status of hardware triggering.

#### Prototype

public ErrorCode SetTrigHardware(bool status)

#### **Parameters**

status

New status of hardware triggering, where: *True* = use hardware triggering, *False* = do not use hardware triggering.

#### **Return Values**

ErrorCode.None

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetTrigHardware(true);
dll.SetTrigSource(LV9063EntryPoint.TrigSource.E1); // Set E1 as triggering source
dll.SetTrigLevel(2); // Set 2 V as triggering level
dll.SetSamplingFreq(1000f); // 1000 Hz
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetTrigDelay SetTrigLevel SetTrigSlope SetTrigSource

### SetTrigLevel

### Description

Set the triggering level (hardware triggering only).

#### Prototype

```
public ErrorCode SetTrigLevel(float level)
```

#### Parameters

level

Triggering level in the units of the triggering source (V for voltage, A for current).

### **Return Values**

ErrorCode.None

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetTrigHardware(true);
dll.SetTrigGource(LV9063EntryPoint.TrigSource.E1); // Set E1 as triggering source
dll.SetTrigLevel(1.5f); // Set 1.5 V as triggering level
dll.SetSamplingFreq(1000f); // 1000 Hz
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetTrigDelay SetTrigHardware SetTrigSlope SetTrigSource

### SetTrigSlope

#### Description

Set the edge (falling or rising) of the triggering slope (hardware triggering only).

#### Prototype

public ErrorCode SetTrigSlope(TrigSlope slope)

#### **Parameters**

slope

Use *Rising* for a rising edge triggering (positive slope) and *Falling* for a falling edge triggering (negative slope). See TrigSlope enum.

### **Return Values**

ErrorCode.None

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetTrigHardware(true);
dll.SetTrigSource(LV9063EntryPoint.TrigSource.E1); // Set E1 as triggering source
dll.SetTrigLevel(1.5f); // Set 1.5 V as triggering level
dll.SetTrigSlope(LV9063EntryPoint.TrigSlope.Rising); // Positive slope
dll.SetSamplingFreq(1000f); // 1000 Hz
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetTrigDelay SetTrigHardware SetTrigLevel SetTrigSource

### SetTrigSource

### Description

Set the triggering source (hardware triggering only).

#### Prototype

public ErrorCode SetTrigSource(TrigSource source)

#### Parameters

source

ID of the triggering source. See TrigSource enum.

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetNbInputs(2); // Set for 2 inputs
dll.SetInput(0, LV9063EntryPoint.Input.E1); // Set input #1 as E1
dll.SetInput(1, LV9063EntryPoint.Input.E2); // Set input #2 as E2
dll.SetTrigHardware(true);
dll.SetTrigSource(LV9063EntryPoint.TrigSource.E1); // Set E1 as triggering source
dll.SetTrigLevel(1.5f); // Set 1.5 V as triggering level
dll.SetSamplingFreq(1000f); // 1000 Hz
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

AcquireData SetTrigDelay SetTrigHardware SetTrigLevel SetTrigSlope

## *SetTrigTable*

### Description

Set the triggering table (hardware triggering only).

### Prototype

```
public ErrorCode SetTrigTable(TrigSource source, float level, int delay, TrigSlope
slope)
```

#### Parameters

| source | ID of the triggering source. See TrigSource enum.                                                                                                                                                                    |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| level  | Triggering level in the units of the triggering source (V for voltage, A for current).                                                                                                                               |
| delay  | New triggering delay. Can be in the range [0, 65535], where:<br><i>0</i> = first triggering point for which there is at least 50% of the points<br>after this point and at least 0% of the points before this point, |
|        | <br>6553 = first triggering point for which there is at least 45% of the<br>points after this point and at least 5% of the points before this point,                                                                 |
|        | <br>65535 = first triggering point for which there is at least 0% of the<br>points after this point and at least 50% of the points before this<br>point.                                                             |
| slope  | Use <i>Rising</i> for a rising edge triggering (positive slope) and <i>Falling</i> for a falling edge triggering (negative slope). See TrigSlope enum.                                                               |

#### **Return Values**

ErrorCode.None ErrorCode.OutOfBounds

#### Example

```
float[] data = new float[16384];
LV9063EntryPoint dll = new LV9063EntryPoint();
dll.InitDevice(0);
dll.SetAcqTable(1000f, new LV9063EntryPoint.Input[] { LV9063EntryPoint.Input.E1,
    LV9063EntryPoint.Input.E2 }, 4);
dll.SetTrigHardware(true);
dll.SetTrigTable(LV9063EntryPoint.TrigSource.E1, 1.5f, 0, LV9063EntryPoint.
    TrigSlope.Rising);
dll.SendAcqTable();
dll.AcquireData(data);
```

### See Also

SetTrigDelay SetTrigHardware SetTrigLevel SetTrigSlope SetTrigSource